Exercise 45

(a) If $f(x)=\sqrt{3-5 x}$, use the definition of a derivative to find $f^{\prime}(x)$.
(b) Find the domains of f and f^{\prime}.
(c) Graph f and f^{\prime} on a common screen. Compare the graphs to see whether your answer to part (a) is reasonable.

Solution

Part (a)
Use the definition of a derivative to find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3-5(x+h)}-\sqrt{3-5 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3-5 x-5 h}-\sqrt{3-5 x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3-5 x-5 h}-\sqrt{3-5 x}}{h} \times \frac{\sqrt{3-5 x-5 h}+\sqrt{3-5 x}}{\sqrt{3-5 x-5 h}+\sqrt{3-5 x}} \\
& =\lim _{h \rightarrow 0} \frac{(3-5 x-5 h)-(3-5 x)}{h(\sqrt{3-5 x-5 h}+\sqrt{3-5 x})} \\
& =\lim _{h \rightarrow 0} \frac{-5 h}{h(\sqrt{3-5 x-5 h}+\sqrt{3-5 x})} \\
& =\lim _{h \rightarrow 0} \frac{-5}{\sqrt{3-5 x-5 h}+\sqrt{3-5 x}} \\
& =\frac{-5}{\sqrt{3-5 x}+\sqrt{3-5 x}} \\
& =-\frac{5}{2 \sqrt{3-5 x}}
\end{aligned}
$$

Part (b)

The domain of $f(x)=\sqrt{3-5 x}$ is

$$
\begin{gathered}
3-5 x \geq 0 \\
-5 x \geq-3 \\
x \leq \frac{3}{5}
\end{gathered}
$$

whereas the domain of $f^{\prime}(x)$ is

$$
\begin{gathered}
3-5 x \geq 0 \quad \text { and } \quad 3-5 x \neq 0 \\
3-5 x>0 \\
-5 x>-3 \\
x<\frac{3}{5} .
\end{gathered}
$$

Part (c)
Below is a graph of $f(x)$ and $f^{\prime}(x)$ versus x.

